Estimation and Marginalization Using the Kikuchi Approximation Methods
نویسندگان
چکیده
In this letter, we examine a general method of approximation, known as the Kikuchi approximation method, for finding the marginals of a product distribution, as well as the corresponding partition function. The Kikuchi approximation method defines a certain constrained optimization problem, called the Kikuchi problem, and treats its stationary points as approximations to the desired marginals. We show how to associate a graph to any Kikuchi problem and describe a class of local message-passing algorithms along the edges of any such graph, which attempt to find the solutions to the problem. Implementation of these algorithms on graphs with fewer edges requires fewer operations in each iteration. We therefore characterize minimal graphs for a Kikuchi problem, which are those with the minimum number of edges. We show with empirical results that these simpler algorithms often offer significant savings in computational complexity, without suffering a loss in the convergence rate. We give conditions for the convexity of a given Kikuchi problem and the exactness of the approximations in terms of the loops of the minimal graph. More precisely, we show that if the minimal graph is cycle free, then the Kikuchi approximation method is exact, and the converse is also true generically. Together with the fact that in the cycle-free case, the iterative algorithms are equivalent to the well-known belief propagation algorithm, our results imply that, generically, the Kikuchi approximation method can be exact if and only if traditional junction tree methods could also solve the problem exactly.
منابع مشابه
Estimation of the Parameters of the Lomax Distribution using the EM Algorithm and Lindley Approximation
Estimation of statistical distribution parameter is one of the important subject of statistical inference. Due to the applications of Lomax distribution in business, economy, statistical science, queue theory, internet traffic modeling and so on, in this paper, the parameters of Lomax distribution under type II censored samples using maximum likelihood and Bayesian methods are estimated. Wherea...
متن کاملOptimization by Max-Propagation Using Kikuchi Approximations
In this paper we address the problem of using region-based approximations to find the optimal points of a given function. Our approach combines the use of Kikuchi approximations with the application of generalized belief propagation (GBP) using maximization instead of marginalization. The relationship between the fixed points of maximum GBP and the free energy is elucidated. A straightforward c...
متن کاملRegularized Autoregressive Multiple Frequency Estimation
The paper addresses a problem of tracking multiple number of frequencies using Regularized Autoregressive (RAR) approximation. The RAR procedure allows to decrease approximation bias, comparing to other AR-based frequency detection methods, while still providing competitive variance of sample estimates. We show that the RAR estimates of multiple periodicities are consistent in probabilit...
متن کاملMarginalization of Uninteresting Distributed Parameters in Inverse Problems —application to Diffuse Optical Tomography
With inverse problems there are often several unknown distributed parameters of which only one may be of interest. Since assigning incorrect fixed values to the uninteresting parameters usually leads to a severely erroneous model, one is forced to estimate all distributed parameters simultaneously. This may increase the computational complexity of the problem significantly. In the Bayesian fram...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2005